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Abstract. By extending the method due to Muller-Hartmann and Zittartz, we calculate the 
interface tension for the nearest-neighbour antiferromagnetic ising model on the honeycomb 
lattice at finite magnetic fields. The calculation reproduces exact interface tension at zero 
field. From the zero point of the interface tension we derive a compact analytic form of 
the ‘critical frontier’ in the (H, T )  plane (H: magnetic field, 7’: temperature), which agrees 
excellently with the recent ‘quasi-analytical’ result presented by Wu, Wu and Blote. 

The phase diagram of the two-dimension1 ( 2 ~ )  antiferromagnetic (AF) nearest-neigh- 
bour ( N N )  Ising model on square lattice was investigated by Muller-Hartmann and 
Zittartz (MZ)  (1977). They presented an analytic form for the ‘critical frontier’ separat- 
ing regimes of ordered and disordered phases in the (H, T )  plane where H is external 
field and T is temperature. The analytic form derived by MZ reproduces the exact 
results at zero field (Onsager 1944) and the exact critical field at zero temperature. 
Even at non-zero magnetic field, the form is in close agreement with results obtained 
by other methods (Rapaport and Domb 1971, Rapaport 1978, Sneddon 1979). Thus, 
the analytic form is conjectured to be exact, and the MZ method is believed to produce 
reliable results for other models (Lin and Wu 1979). For other 2~ lattices with 
non-trivial unit cell structure, the naive application (Slotte and Hemmer 1985) of the 
MZ method have not succeeded in giving a satisfactory result for the critical frontier. 
In this letter, for the N N  honeycomb AF Ising model, we calculate the interface tension 
and derive a closed form of the critical frontier in the (H, T )  plane. The present 
method is the same as that of MZ in spirit, but is extended so as to handle the unit 
cell structure of the honeycomb lattice properly. We shall show that our result 
reproduces the exact interface tension and critical temperature at zero field (Wannier 
1945, Fisher and Ferdinand 1967, Zia 1986). We shall also show that, for general 
(H, T ) ,  the present result is in excellent agreement with the recent ‘quasi-analytical’ 
result of Wu, Wu and Blote (WWB) (1989) where numerical calculation is combined 
with mapping of the model into the honeycomb eight-vertex model. 

Consider an Ising antiferromagnet on a honeycomb lattice. Expecting Nkel-state 
spin configuration at low temperatures, we decompose the honeycomb lattice into two 
triangular sublattices A and B. The Hamiltonian X of the system with the N N  coupling 
constant J and the external field H is 
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where N is total number of lattice sites, uA, (respectively ae,) is the Ising spin variable 
at the A (respectively B) sublattice site i, and z = 3 is the N N  coordination number of 
the honeycomb lattice. In the above, i runs over all A sublattice sites whereas j runs 
over B sublattice sites adjacent to the A sublattice site i. Note that the terms in a 
square bracket gives an energy per bond. For N N  spin combinations (uA,,  aBJ) = 
( + l , T l ) ,  the energy per bond is Eb=-J ,  and for combinations (* l , * l ) ,  Eb= 
J T ( 2 / z ) H .  The ground state combination (aA,, a.,) depends on H. When [HI is less 
than the critical value H,( T = 0 )  = zJ, combinations (* 1, T 1) are selected for the ground 
state and (*l ,  + l )  are considered as excited states. We introduce ‘excited bond 
strengths’ w,  and w- as 

( 2 )  
w - = - ( 2 5 - ;  1 2 H )  w + = - ( 2 J + ; H )  1 2 

k B  T k B  T 
where kB is the Boltzmann constant. 

Let us set a grid upon the honeycomb lattice as shown in figure 1. Impose a proper 
boundary condition so that a phase separation line, an interface between the two 
co-existing phases, runs across the lattice. We calculate the interface tension under 
the solid-on-solid ( S O S )  approximation (Temkin 1966) where the ‘overhang’ interface 
configurations are discarded. It should be remarked that the SOS approximation often 
reproduces exact 1 D interface tensions if the orientation of the interface is appropriately 
chosen (Muller-Hartmann and Zittartz 1977, Chalheiros et af 1987). We describe the 
SOS interface configuration by a set of variables {h,, h:, a,, a:}, where h, (respectively 
h:)  is the unit-cell height at the horizontal site x (respectively x‘), and a, (respectively 
a : ) = A  or B denotes the position in the unit cell. The interface Hamiltonian 2, is 
then expressed as 

n 

(3) 
1 
- 2, = c [ Vm+Jhx - h:) + V&;,mv+,(h: - h x + J l  kBT x=o 

Figure 1. Example of interface configuration. We set a rectangular grid over the honeycomb 
lattice to indicate column site (horizontal direction) and interface height (vertical direction). 
The non-trivial unit cell structure of the honeycomb lattice is considered by ‘inner degree 
of freedom’ ( A  or B )  for heights and by primes for column site positions. 
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2w++ h ( w + +  w-) ( h z 0 )  
2w+ + Ih + I / (  w+ + w-) ( h < O ) .  (4e) 

The interface partition function is 

zn= c c exp[-%P,/ kB (h0 = 0) 
{ h , , h ; } = - J c .  ( u , , u : } = A , B  

from which the interface tension y ( H ,  T )  is calculated as 

1 
y ( H ,  T)=-k,Tl im-lnZ, .  n-cc n (6) 

The partition function Z,, is re-expressed in terms of transfer matrices % and %' 
after taking a partial sum with respect to { h , }  and { h k } :  

where 

More explicitly, 

%,=exp( -?)( 1 + exp( - w+ - w-) 
1 - exp( - w+ - w - )  

2z3 = 

2z4 = 

2 exp( -2w+) 
1 - exp( - w+ - w - )  

2 exp( - w-) 
l-exp(-w+- w-)' 

It is interesting to note that the system described by the combined transfer matrix 
3. 2' is equivalent to a one-dimensional Ising model in a staggered field with the 
Hamiltonian: 



L220 Letter to the Editor 

where 

The maximum eigenvalue A of the transfer matrix 2 - %' is 

From equation (6), we obtain y ( H ,  T )  as 

In particular at H = 0, we have 

which reproduces the exact expression (Zia 1986). 

y ( H ,  T )  =0, i.e. A = 1 .  From equation (13), we have 
Let us proceed to derive the analytic form of the critical frontier from condition 

(16) 3: = (1 -e,)( 1 - s 4 ) .  

Substituting (10) into (16), we have 

cosh( v) - 2 cosh( v) = 0. 

Note that the equation (17) explicitly shows that the critical frontier is symmetric in 
w+ and w-. Inserting (2) into (17 ) ,  we obtain an equation to determine the critical 
frontier 

2 cosh($L) =cosh 2K (18) 
or, equivalently, 

L = 3 In[$ cosh 2K *dt  cosh2 2K - 11. 

where L = H /  kBT and K = J/  kBT. We show the curve (18) in figure 2. 

Figure 2. Critical frontier in the (H, T )  plane obtained from equation (18). There is no 
perceptible difference between this curve and that of Wu er a/ (1989). 
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Table 1. Critical values of L = H/ k,T. The present results are shown in the second column. 
For comparison, values of Wu e l  a1 (1989) are listed in the third column. 

L 

K Equation (18) Wu et al 1989 

0.7 0.579 082 014 0.582 429 186 
0.8 1.114082 143 1.119888647 
0.9 1.513 520819 1.520 610 887 
1 .o 1.868 121 505 1.875 996 047 
1.2 2.521 452 338 2.530 156031 
1.5 3.448 969 759 3.458 127 977 

In the L+ 0 limit, the exact critical temperature (Wannier 1945) kBT,/J = 
2/ln(2+&) is obtained from (18). In the T+O limit, the exact critical field H , =  k3J 
is also reproduced. In the second column of table 1 ,  we show the values of critical 
fields calculated from (18) for several temperatures. In the third column, the results 
of WWB (1989) are shown. Our results are in good agreement with those of WWB within 
1%. The slope of the critical frontier near T = 0 is k(3/2) In 2 = k1.0397, which is also 
consistent with the value k1.030 3701 obtained by WWB. 

We have seen that our approximate treatment gives a fairly simple but accurate 
formula (18) for the critical frontier. We must say, however, that (18) may not be 
exact for H # 0; the discrepancy ( -1%) far exceeds the numerical error (-lo-*) of 
WWB. Morevoer, (18) does not satisfy the n = 4 critical condition f4+( a, b, c, d )  = 0 in 
WWB (see equations (10) and (14) of Wu et a2 (1989)). 

The present honeycomb AF Ising model can be mapped to a two-component lattice 
gas model on the { 11 1) surface of GaAs. The field H then relates to the partial vapour 
pressure. Since a step of unit height on the surface can be regarded as a I D  interface, 
the interface tension obtained in this letter gives the step tension for various partial 
vapour pressure. The critical frontier gives an estimate of roughening temperature T R  

(Jayaprakash et al 1983, Akutsu and Akutsu 1987) of the (111) surface as a function 
of the partial vapour pressure. The partial-vapour-pressure dependence of TR, which 
has been actually observed in Ag,S (Ohachi and Taniguchi 1983, 1988), is a common 
feature of two- (or more-) component systems. With suitable extension of the present 
treatment introducing extra ‘inner degrees of freedom’ (like {ax} ) ,  we can calculate 
the interface tension for various realistic systems with complicated unit cell structure. 
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